1. MRI in MS (Introduction)
2. Conventional MRI in MS
3. MRI in MS diagnostic criteria
4. MRI of MS in Asia
5. MRI variations in MS
6. Non-conventional MRI in MS
7. MRI as a biomarker in MS
8. MRI in NMO
9. Diagnosis of ADEM
MRI in MS

- MRI lacks specificity but has high sensitivity; established as a most important “paraclinical test”
- Important in the new diagnostic criteria
- Many new MR technologies have been first applied for MS
 - Ex. FLAIR, MTR, double IR
- Biomarker
Outline

1. MRI in MS (Introduction)
2. Conventional MRI in MS
3. MRI in MS diagnostic criteria
4. MRI of MS in Asia
5. MRI variations in MS
6. Non-conventional MRI in MS
7. MRI as a biomarker in MS
8. MRI in NMO
9. Diagnosis of ADEM
• Hyperintense: edema, inflammation, demyelination, axonal loss can be hyperintense; lacks specificity

• Slightly hyperintense: dirty-appearing WM
 Vrenken, et al. *AJNR* 2010;31:541-8

• Isointense: normal-appearing WM: microscopical demyelination and/or axonal loss

• Hypointense: iron deposition? (putamen, thalamus)
• Hyperintense (free radical? Foam cell? Ferritin?)
 – Periphery of active lesions
 – Dentate nucleus
• 20% of MS patients (esp., SPMS) (Roccataglitata, et al. *Radiology* 2009;251:503-10)
• Isointense: 80-90% of T2 lesions
• Hypointense: “T1-black hole” (10-20% of T2 lesions): Axonal loss of severe demyelination
Gd-enhanced MRI

- BBB breakdown; active lesions
- 5-10 times > clinical relapse
Outline

1. MRI in MS (Introduction)
2. Conventional MRI in MS
3. MRI in MS diagnostic criteria
4. MRI of MS in Asia
5. MRI variations in MS
6. Non-conventional MRI in MS
7. MRI as a biomarker in MS
8. MRI in NMO
9. Diagnosis of ADEM
McDonald criteria

- Symptoms suggestive of MS
- Dissemination in space
 - Clinical information
 - MR abnormality
- Dissemination in time
 - Clinical information
 - MR abnormality
- No better explanation than MS
MRI Criteria for Brain Abnormality (Dissemination in Space)

- Three of four of the following:
 1. One Gd-enhancing lesion or nine T2-hyperintense lesions if there is no Gd enhancing lesion
 2. At least one infratentorial lesion
 3. At least one juxtacortical lesion
 4. At least three periventricular lesions
- A spinal cord lesion can be considered equivalent to a brain infratentorial lesion; an enhancing cord lesion to an enhancing brain lesion.

MRI Criteria for Dissemination of Lesions in Time

- Detection of an enhancing lesion at least 3 months after the onset of the initial clinical event, not at the site corresponding to the initial event
- Detection of a new T2 lesion if it appears at any time compared with a reference scan done at least 30 days after the onset of the initial clinical event
Swanton criteria

Swanton et al. *JNNP* 2006;77:830-3

- Intended to increase the sensitivity for clinically isolated syndrome (CIS)
- Dissemination in space
 - ≥ 2 of the followings
 - Subcortical WM, periventricular WM, posterior fossa, spinal cord
- Dissemination in time
 - New T2 lesion on follow-up MRI
- Higher sensitivity, almost equal specificity
- Hesitation among most clinicians to adopt
 (Loevblad et al. *AJNR* 2010;31:983)
1. MRI in MS (Introduction)
2. Conventional MRI in MS
3. MRI in MS diagnostic criteria
4. MRI of MS in Asia
5. MRI variations in MS
6. Non-conventional MRI in MS
7. MRI as a biomarker in MS
8. MRI in NMO
9. Diagnosis of ADEM
MS in Asia

• 1/3 of patients have optic-spinal MS or Devic disease
 – Most of these patients are probably neuromyelitis optica (NMO).

• Fewer brain lesions than Caucasians

• Much fewer cerebellar lesions

• Fewer chronic progressive (primary or secondary progressive) MS patients

• More lesions with atypical MR finding

• Lower rate of positive CSF oligoclonal bands
 – Patients with negative oligoclonal bands have more frequent atypical lesions, such as tumefactive MS or diffuse white matter lesions
• Clinical symptoms more important than MRI for RRMS
• Same with McDonald criteria for PPMS
• Additional definitions for CPMS, Devic disease, optic-spinal MS and Balo’s concentric sclerosis
Proposed modifications to the McDonald criteria for use in Asia

<table>
<thead>
<tr>
<th>McDonald criteria</th>
<th>Proposed modifications for Asians</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spinal MRI</td>
<td></td>
</tr>
<tr>
<td>Spinal cord lesion should be under two vertebral bodies in height</td>
<td>No restriction to length of spinal cord lesion</td>
</tr>
<tr>
<td>No swelling of the spinal cord lesion</td>
<td>No restriction to spinal cord lesion with swelling</td>
</tr>
<tr>
<td>Spinal cord lesion should occupy part of the cross section</td>
<td>No restriction to spinal cord lesion involving complete cross section</td>
</tr>
<tr>
<td>Brain MRI</td>
<td></td>
</tr>
<tr>
<td>Nine T2-hyperintense lesions or one gadolinium-enhancing lesion</td>
<td>Four or more brain MRI T2-hyperintense lesions in patients less than 60 years of age or one gadolinium-enhancing lesion; or more than one lesion in two or more typical sites (juxtacortical, periventricular, posterior fossa, and spinal cord)</td>
</tr>
</tbody>
</table>
Outline

1. MRI in MS (Introduction)
2. Conventional MRI in MS
3. MRI in MS diagnostic criteria
4. MRI of MS in Asia
5. MRI variations in MS
6. Non-conventional MRI in MS
7. MRI as a biomarker in MS
8. MRI in NMO
9. Diagnosis of ADEM
MR variations in MS

- Ovoid lesion
- Enhancing lesion
- Callosal-septal interface lesion
- Isolated U-fiber lesion
- Tumefactive MS lesion
- Balo’s concentric sclerosis
- Spinal cord lesion
Ovoid lesions
(Dawson's finger)

- Ovoid-shaped deep WM lesions perpendicular to the lateral ventricular wall
- Represent perivenous inflammation
- Frequent but not specific

Callosal-septal interface lesions (Subcallosal striations)

- Intracallosal lesions perpendicular to the ventricular wall
- High sensitivity and specificity
- Thin, sagittal FLAIR useful for MS diagnosis

Isolated U-fiber lesions (Juxtacortical lesions)

- MS lesions extending along the subcortical U-fibers
- About half of MS patients have at least one isolated U-fiber lesion
- Representing inflammation along the subcortical U-fibers?
- May be a cause of subcortical dementia
- Relatively specific for MS; adopted in McDonald’s criteria

Pathology (PAS stain), Okazaki
Fundamentals of Neuropathology
Tumefactive MS

- Glioma (GBM)-like MS lesion
 - Large size (>2 cm)
 - Mass effect
 - Ring enhancement

- Biopsy is often required for final diagnosis, but possibility of MS should be considered to avoid aggressive surgery
Differentiation between tumefactive MS and GBM

- Less mass effect than GBM
- Open-ring sign
- Perfusion imaging
 (Cha, et al. *AJNR* 2001; 22:1109)
- Low density on noncontrast CT
 (Kim, et al. *Radiology* 2009; 251:467)
- No punctate hypointensity on SWI
 (Kim, et al, *AJNR* 2009; 30:1574)
Balo’s concentric sclerosis

- A rare variant of MS
- WM destroyed in concentric layers
- Formerly considered to be a monophasic rapidly progressive disease with a fatal outcome
- Increasing number of cases with better outcome (Karaarslan, et al. AJNR 2001;22:1362)
- Relatively more frequent in China and Phillippines
- Very rare in Europe, US and Japan

T2WI @ 3T
T1WI
DWI

Pathology (Myelin stain), Okazaki Fundamentals of Neuropathology
1. MRI in MS (Introduction)
2. Conventional MRI in MS
3. MRI in MS diagnostic criteria
4. MRI of MS in Asia
5. MRI variations in MS
6. Non-conventional MRI in MS
7. MRI as a biomarker in MS
8. MRI in NMO
9. Diagnosis of ADEM
Non-conventional MRI for MS

• Diffusion MRI
• High-field MRI, ultra high-field MRI
• Phase imaging
• SWI
• Double IR
• USPIO-enhanced MRI
Diffusion MRI in MS

• Active MS lesions may be partially hyperintense on DWI
 (Tsuchiya, et al. *EJR* 1997;31:165
 – T2-shine through effect
 – Cytotoxic edema

• Decreased FA on DTI
High-field (≥ 3T) MRI

- Higher SNR than 1.5 T
- More MS lesions detected
MS @ 3T
Cortical MS lesions at 7T

Iron depositions and venous dilatations shown on SWI in MS

Haacke, et al. JMRI 2009;29:537-44
Cortical MS lesions on Double inversion recovery (IR)

- 2 times than SE T2WI,
- 1.5 times than FLAIR

USPIO in MS

(Dousset et al. AJNR 2006;27:1000-5)

- **USPIO**: ultrasmall particles of iron oxide
- **Phagocytic activity**
 - High signal on T1WI, low on T2WI
Outline

1. MRI in MS (Introduction)
2. Conventional MRI in MS
3. MRI in MS diagnostic criteria
4. MRI of MS in Asia
5. MRI variations in MS
6. Non-conventional MRI in MS
7. MRI as a biomarker in MS
8. MRI in NMO
9. Diagnosis of ADEM
Why do we need surrogate tools to monitor MS evolution?

- Relapses are relatively infrequent and poorly related to disability accumulation
- Disability takes several years to accumulate
- Clinical scales are poorly reliable

Why MRI as a surrogate?

- Sensitive (5-10 times > relapses)
- Objective
- Continuous values/Linear scale
- Close to “actual” pathology
- Reproducible
- Easy to blind and standardize
- Retrievable data
Most widely used MR measurements for clinical trials

Loevblad, et al. *AJNR* 2010;31:983-9

- **T2WI**
 - T2 lesion load
 - New lesions
 - Enlarging lesions

- **Gd**
 - Total lesion number
 - New lesions
 - Enlarging lesions
T2-volume measurement by Fuzzy Connectedness

T2-lesion load in MS

- **Not so correlated with clinical symptoms**
 - Fisniku, et al. *Brain* 2008;131:807-17

- **Possible reasons**
 - T2 lesions correspond to various pathologies
 - Normal-appearing, dirty-appearing WM
 - Brain atrophy
Other MRI measurements used for clinical trials

Loevblad, et al. AJNR 2010;31:983-9

- T1 black hole
- Brain atrophy
- Spinal cord atrophy
- MTR (Whole brain MTR histogram)
- DTI
- MRS
- fMRI
Whole brain MTR histogram in MS

- Peak height of whole brain MTRH represents the amount of normal WM (myelin)
- Different MTRH between MS patients and controls (van Buchem et al. AJNR 1997; 18:1287)
- MTRH peak height correlates with neuropsychological tests (van Buchem et al. Neurology 1998; 50:1609)

van Buchem et al. AJNR 1997; 18:1287
Outline

1. MRI in MS (Introduction)
2. Conventional MRI in MS
3. MRI in MS diagnostic criteria
4. MRI of MS in Asia
5. MRI variations in MS
6. Non-conventional MRI in MS
7. MRI as a biomarker in MS
8. MRI in NMO
9. Diagnosis of ADEM
Neuromyelitis optica (NMO)

- Idiopathic, severe, demyelinating disease of the CNS that preferentially affects the optic nerve and spinal cord
- Formerly thought to be a variant of MS
- Specific antibody for NMO (NMO-IgG: aquaporin 4) -> distinct entity
- Pathologically, astrocytes are primally damaged (demyelination is secondary)
Diagnositic criteria for NMO

• Optic neuritis
• Acute myelitis
• ≥2 of the followings
 – Longitudinally extensive myelitis (≥ 3 vertebral segments seen on MRI)
 – Brain MRI not fulfilling MS criteria
 – Positive AQP4
MS vs. NMO

<table>
<thead>
<tr>
<th></th>
<th>MS</th>
<th>NMO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median age of</td>
<td>29</td>
<td>39</td>
</tr>
<tr>
<td>onset</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sex (M:F)</td>
<td>1 : 2</td>
<td>1 : 9</td>
</tr>
<tr>
<td>MRI: brain</td>
<td>Periventricular</td>
<td>• Normal or non-specific</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Hypothalamic, brainstem</td>
</tr>
<tr>
<td>MRI: spinal</td>
<td>• Short-segment</td>
<td>• Longitudinally extensive (≥ 3 vertebral segments)</td>
</tr>
<tr>
<td>cord</td>
<td>• Peripheral</td>
<td>• Central</td>
</tr>
</tbody>
</table>

NMO

T2WI

Gd

T2WI
T2-hyperintense lesion density (MS vs. NMO)

- NMO: preferentially involves the central regions
- MS: preferentially involves the lateral and posterior regions

Brain lesions in NMO

Cloud-like enhancement in NMO

- Multiple patchy enhancing lesions with blurred margin
- 90% in NMO patients, 8% in MS patients
 - Specific to NMO
- Possibly caused by primary involvement of the BBB by the autoantibodies

Acute demyelinating encephalomyelitis; ADEM

- Severe inflammatory demyelinating disease, frequently secondary to infection or vaccinations
- Usually monophasic
- May recur (multiphasic disseminated encephalomyelitis; MDEM)
- May evolve to MS
- How different from MS?
- Is there any “diagnostic criteria?”
- Possible to differentiate from MS at the first attack?
Proposed criteria for differentiation between ADEM and MS (>15 yrs old) (Multi-centered study in France)

De Seze et al. Arch Neurol 2007;64:1426-32

• ≥2 of the followings -> ADEM
 – Atypical clinical symptoms for MS
 • Consciousness alteration, hypersomnia, aphasia, seizure, hemiplegia, etc.)
 – Absence of oligoclonal bands
 – Gray matter involvement on MRI

• No significant difference in infectious episodes or vaccinations between ADEM and MS
Role of MRI in the differentiation of ADEM from MS in children (<18 yrs old)

- ≥2 of the followings → MS
 - Absence of a diffuse bilateral lesion pattern
 - Presence of black holes
 - Presence of two or more periventricular lesions

- Sensitivity: 81%, Specificity: 95%

- Follow-up at least 3 years (6 years for <11 years old) is recommended when diagnosed as ADEM

- Most useful for differentiating a first attack of MS from ADEM (Ketelslegers, et al. *Neurology* 2010;74:1412-1415)
Summary

- MRI plays an important role in diagnosis of WM diseases (MS, NMO, ADEM).
- MRI is useful for biomarker in MS.
- There are differences in MRI of MS between Asian countries and western countries.
Acknowledgements

New York University
- Robert I. Grossman

Kyoto University
- Mitsunori Kanagaki, Akira Yamamoto, Nobuyuki Mori, Seiko Kasahara, Takeshi Sawada, Emiko Morimoto, Kaori Togashi, Riki Matsumoto, Ryosuke Takahashi, Hidenao Fukuyama

Mie University
- Hidekazu Tomimoto

Tohoku University
- Kazuo Fujihara

Kyoto Min-iren Chuo Hospital, National Hospital Organization Utano Hospital, Irinoiin
- Takahiko Saida

University of Bordeaux
- Vincent Dousset

University Hospital San Raffaele
- Massimo Philippi

Osaka City University
- Taro Shimono, Tetsuo Nakayama, Kaeko Kitamura, Shinichi Sakamoto